
Abstract

We compare distortionary effects of time-invariant linear filters used

in the economic literature. We investigate the HP filter (Hodrick and

Prescott, 1997), the Butterworth filters, and BK filter (Baxter and King,

1999) in filtering real GDP of Japan. We find that the tangent-based But-

terworth has the smallest distortion.

1. Introduction

Empirical studies in economics frequently use filtering methods to

de-noise time series, extract a trend of time series, and adjust seasonal ef-

fects. For example, Kydland and Prescott (1982) use the so-called HP fil-

ter developed by Hodrick and Prescott (1997) to investigate the properties

of their real business-cycle model. They filter actual data and time series

data generated from their model to discuss validity of the model and styl-

ized facts of real business cycle. Another example is concerning seasonal

adjustments. Many economic time series exhibit seasonal fluctuations,

which obscure underlying economic changes. Researchers apply various

statistical models and filtering techniques to implement seasonal adjust-

ment. A comprehensive survey is found in Ghysels and Osborn (2001).

The X-12-ARIMA, developed by the U.S. Census of Bureau, is one of the
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well-known methods frequently used by official governments in many

countries. Findley et al. (1998) provide a detailed explanation on the X-12

-ARIMA seasonal adjustment.

Finally, filtering methods are used to estimate potential output, natu-

ral rate of unemployment, structural budget deficit or total factor produc-

tivity (TFP). It is possible to take advantage of economic theories with

functional specifications, as implemented by Congressional Budget Office

(2001) of the U.S., if extensive economic database is available and theo-

retical relationships are stable. In many countries, especially developing

countries, we may not have reliable economic data sufficient to estimate

theoretical relationships. In such a case, we often rely on filtering methods

to extract a trend component, which is supposed to correspond to esti-

mates of unobservable ‘potential,’ ‘natural’ or ‘structural’ variables. Use

of the HP filter and its variants is prevailing. De Masi (1997) applies the

HP filter to extracting a trend in residuals from a production function,

estimates TFP for Japan. de Brouwer (1998) uses it to estimate potential

GDP of Australian economy. European Commission (1995) makes use of

the HP filter to estimate the cyclically adjusted government budget bal-

ances for the member states of the European Union. Most recently, Ger-

lach and Yiu (2004) estimate output gaps in Asian countries by means of

filtering methods.

The HP filter is most frequently used in empirical economics. The

seminal paper of Hodrick and Prescott (1997), circulated in 1980 as a

working paper, spawns a number of researches that examine the filter-

ing method pros and cons, and that propose various types of filters to de-

compose economic time series into a trend component and cyclical com-

ponents. One of the problems discussed in the literature is that the HP
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filtering induces spurious cyclical effects. That is, the filtered series exhib-

its periodicity which does not exist in the original series. King and Rebelo

(1993) point out that the HP filter alters second moments of time series to

a large extent, and claim that stylized facts about periodicity and co-

movement of real business cycle would be artifacts because they are based

on the second moments. They also study conditions under which the HP

filter is optimal when a time series follows ARMA-type stochastic proc-

esses. They argue that the conditions are unlikely satisfied. Gerlach and

Yiu(2004)find that Asian countries’ data give no supportive evidence for

the conditions. Reeves et al. (2000) generalize the HP filtering to a multi-

variate case and propose maximum-likelihood estimation under normality.

Pedersen (2001) argues that the difference in the second moments

cannot be taken as evidence of a failure of a specific filter. One of the

distortions caused by filtering is the Slutzky effect (Slutzky, 1937).

Harvey and Jaeger (1993) and Cogley and Nason (1995) claim that the

HP filter has the Slutzky effect to create spurious cycles. What they find

is a peak in the power transfer function of the subcomponent of the HP

filter. But, this implies that even an ideal filter may cause the spurious ef-

fect. Pedersen (2001) claims that the Slutzky effect should be defined as

cycles in the power transfer function of the overall, but not subcomponent,

filter. Then, no ideal filter to extract targeted periodicity induces the

Slutzky effect. According to this definition, the HP filter does cause the

Slutzky effect.

Another problem to use the HP filter is how to determine a smooth-

ing parameter, which penalizes variability in the growth component series.

Hodrick and Prescott (1997) suggest 1600 for the smoothing parameter

for quarterly data. For annual data, the value is typically set to 100 in the
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empirical literature (Backus and Kehoe, 1992; European Commission,

1995). Pedersen (2001) studies time series of five autoregressive processes

and finds that the optimal value, in terms of mean squared errors, ranges

from 1007 to 1269 for quarterly sampled series, from 3.73 to 5.03 for an-

nual series, and from 83,200 to 158,800 for monthly series.

The frequency domain analysis reveals that the smoothing parameter

is closely related to the periodicity extracted by the filter. Then, if we

know what periodicity we should extract from the original series, we

could identify what value the smoothing parameter should be. In the em-

pirical studies on the business cycles in the U.S., the business cycles are

often considered last between eighteen months and eight years, following

Burns and Mitchell (1946). Then, if we could derive the specific relation

between the periodicity and the smoothing parameter, we argue what

value the parameter should take. Gomez (2001) clarifies this point. It is

shown that the HP filter is a special case of the Butterworth digital filter

based on the sine function, and that the smoothing parameter is a function

of a cut-off frequency, which is determined by the targeted periodicity.

Baxter and King (1999) propose a time-invariant band-pass filter to re-

move certain periodic components. Christiano and Fitzgerald (2003) pro-

pose a time-varying band-pass filter.

The purpose of this paper is to study distortionary effects of several

time-invariant linear filters frequently used in the economic literature. We

measure the distortionary effects with a mean-square-error metric consid-

ered in Christiano and Fitzgerald (2003) and Pedersen (2001). We exam-

ine a class of Butterwoth digital filters, which incorporate the HP filter as

a special case, and a class of finite approximation to the ideal filters, in-

cluding the Baxter-King filter (Baxter and King, 1999). We find that the
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tangent-based Butterworth filter gives the best performance when we ex-

tract a cyclical component less than eight years from real GDP of Japan.

We exclude the band-pass filter developed by Christiano and Fitzgerald

(2003), because it is time-varying and left for the ongoing project.

This paper is organized as follows. In the next section, we present a

metric to measure filtering distortions. Our argument is based on the mean

-square-error criterion. In section 3, we summarize time-invariant linear

filters that we investigate here. In section4,we present empirical results,

using the annual real GDP of Japan. In the final section, we summarize

the findings and discuss the future research.

2. Filtering Distortion

Before discussing filtering distortion, we briefly present notions used here.

Suppose we analyze a real-valued stationary stochastic process with finite

second moments, yt (���t��). The autocovariance generating function

is given as

gy (B )��
t���� rt B t (2.1)

where B denotes a backshift operator, and rt gives the autocovariance at

lag t. The Fourier transform of rt gives the power spectrum (or the power

spectral density function). It can be written with the autocovariance gener-

ating function gy (b ) as, at an angular frequency ω,

fy (�)� 1

2�gy (e�iw)������� (2.2)

The ‘i’ denotes the imaginary number. Let a time-invariant linear filter

h (B )��
j���� aj B j (2.3)
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where aj takes a real number and absolute summable. If l is equal to k,

the filter is a symmetric filter. The series filtered with this filter is written

as

ct �h (B )yt ��
j���� aj B j yt (2.4)

The Fourier transform of aj is called the frequency response function (or

transfer function) of the filter, which is expressed as h (e�i�). It can be de-

composed as follows:

h (e�i�)��h (e�i�)�e�i�(�) (2.5)

The term �h (e�i�)�is called the gain of the filter, which captures weights

that the filter put on various cyclical components. The function �(�) is the

phase (or the phase angle) of the filter, which captures the time shifts that

the filter makes in the time series. Then, the spectrum of the filtered series

is related to that of yt as follows:

fc (�)��h (e�i�)�2 fy (�) (2.6)

The squared gain �h (e�i�)�2 is the power transfer function of the filter,

which we denote by H(�).

Suppose we extract frequencies below or above specified cutoff

frequency. A low-pass filter (lp) passes frequencies below the cutoff fre-

quency (�1 ). The power transfer function of an ideal low-pass filter satis-

fies

Hlp
�(�)� 1������l

0������1

�
(2.7)

Then, the frequencies above the cutoff frequency are attenuated. A high-
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pass filter (hp) passes frequencies above the cutoff frequency, and hp is

equal to 1- lp (complementarity). The difference of two ideal low-pass

filters gives an ideal band-pass filter. Let lp(l) an ideal low-pass filter with

a cutoff frequency of �1 , and lp(u) one with �u , and �1 ��u . Then, an

ideal band-pass filter is computed as bp = lp(u) - lp(l), and its power

transfer function satisfies

0������l

Hbp
�(�)� 1��1 ������u

����� (2.8)
0������u

Suppose we have interest in extracting a certain band of periodicity, say,

ranging from one and half a year to eight years. Then, if we use quarterly

time-series data, we set �u to π/3, and �1 to π/16.

In practice, we need to approximate ideal filters in some ways. The

approximating filters typically exhibit three types of departure from the

ideal filters: leakage, compression, and exacerbation. Leakage captures the

effect that the filter passes frequencies which should be suppressed. Com-

pression means that the filter put too small weights on the frequencies to

be passed, that is, the frequency response is less than one. Exacerbation is

caused by ripples of the filters: a frequency response corresponds to multi-

ple frequencies. Generally speaking, the first two effects can be alleviated

by increasing orders of polynomials of the approximating filter. The in-

crease in orders, however, makes the oscillatory behavior of the filter

more rapid and does not lessen the size of the ripples. This phenomenon

is called the Gibbs phenomenon in filtering theory (Oppenheim and

Schafer 1999, pp. 466-468).

These effects create the Slutzky effect, as pointed out by Pedersen

(2001, pp. 1085-1090). If the original time series, however, has negligible
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values of the power spectrum at the frequencies with severe leakage, com-

pression, or exacerbation, the filtering is less distorting. Therefore, we

need to take into account the feature of the power spectrum of the time

series to measure overall distortionary effects of filters. With the mean-

square-error (MSE) criterion, the Wiener-Kolmogorov solution (Whittle,

1983) gives an optimal business cycle filter in the time domain. We can

employ the MSE-type criterion to measure the overall distortion. Let us

consider the following MSE criterion:

MSE �1

T

�
t�1

T

(ĉ t �ct
�)2 (2.9)

Here, ct
�(t�1�����T) denotes the true cyclical component of the time se-

ries, which is obtained by an ideal filter, and c.tis its estimate with some

filter. Then,

ct
��h�(B )yt (2.10)

ĉ t �ĥ (B )yt (2.11)

Thus, we have

MSE �1

T

�
t�1

T

(ĥ (B )�h�(B ))2yt
2 (2.12)

Since it is not possible to define an ideal filter in the time domain with a

finite sample, it is convenient to define it in the frequency domain. There-

fore, we consider the following frequency-domain analogue:

MSE�f �����(ĥ (e�i�)�h�(e�i�))2 fy (�)d� (2.13)

This metric is also considered in Christiano and Fitzgerald (2003). Ped-

ersen (2001) uses a similar metric in discrete term, using the power trans-

fer function. Using our notations, it can be written:
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Q ����0

�
Ĥ (�)�H�(�)
��� ���2fy (�)�� (2.14)

Since the time series to be filtered is real, the symmetry of the power

function requires summation over only a half of the frequency domain.

The difference from our metric is that it only takes account of the differ-

ence in variance of the filtered series, while our metric is directly related

to the conventional mean square error criterion and takes account of dif-

ference in signs of frequency response between the two filters. In practical

experiences, both metrics give qualitatively similar results.

3. Time-Invariant Linear Filters

In this section, we briefly review time-invariant linear filters that are stud-

ied here. We focus on the time-invariant linear filter.

ct �ĥ (B )yt ��
j��k

l

âj B j yt (3.1)

Further, we consider symmetric filters, so that there is no phase shift.

Then, the integer l is equal to k. All the filters considered here would

have zero phases except for endpoints.

The HP filter is most intensively used in empirical studies of eco-

nomics. Hodrick and Prescott (1997) suppose that a time series (yt ) is de-

composed into the sum of a growth component (gt ) and a cyclical compo-

nent (ct ). With a sample size of T, they consider the following minimiza-

tion problem:

Min�gt �t�1
T

�
t�1

T

ct
2���

t�2

T�1

[(gt�1�gt )�(gt �gt�1)]
2

� �
(3.2)

As shown in King and Rebelo (1993), the HP filter for the cyclical com-

ponent is expressed as
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ĥ HP (B )� �[1�B ]2 [1�B�1]2

1��[1�B ]2 [1�B�1]2 (3.3)

As Gomez (2001) shows, the HP filter is a special case of the Butterworth

digital filters in electrical engineering. The Butterworth filters belong to a

class of the Wiener-Kolmogorov solution (Whittle, 1983) to the mean

square error minimization problem of a signal extraction. Under condi-

tions of zero phase shifts, complementarity, symmetry, and zero gain at

zero frequency, we obtain the Butterworth filter based on the sine function

ĥ BFS (B )� �[1�B ]d [1�B�1]d

1��[1�B ]d [1�B�1]d
(3.4)

When the parameter d, the order of the filter, is equal to 2, this is equiva-

lent to the HP filter for the cyclical component. Let �c a cutoff frequency,

at which the gain of the filter is equal to 0.5. Then, we have the following

relation: ��[2sin(�c�2)]�2d (3.5)

Therefore, if we could specify the parameter d and the cutoff frequency,

we can compute the smoothing parameter λ. Similarly, in addition to the

conditions for BFS, if we restricts the gain of the filter is one at a fre-

quency of π, we obtain the Butterworth filter based on the tangent func-

tion (BFT), which is studied in Pollock (2000). The filter is expressed as

ĥ BFT (B )� �[1�B ]d [1�B�1]d

[1�B ]d [1�B�1]d ��[1�B ]d [1�B�1]d
(3.6)

As shown in Gomez (2001) and Pollock (2000), we have the following
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relation: ��[tam(�c�2)]�2d (3.7)

The Butterworth filter has the property of maximal flat gain function (Op-

penheim and Schafer, 1999, appendix B). Therefore, the exacerbation is

expected minimum. As the order parameter d increases, the leakage and

the compression are expected smaller. The low-pass filter for a trend is

obtained by１minus high pass filter for the cyclical component. The band-

pass filter is obtained by the difference of two low-pass filters with differ-

ent frequencies.

Baxter and King (1999) consider the following minimization problem

and obtain a finite symmetric filter to approximate the ideal filter.

min�aj �j��k
k

1

2�������(�)�2 d���(�)�h�(e�i�)��
j��k

k

aj e�i�j (3.8)

The approximate filter has k lags and k leads. This loss function attaches

equal weight to the squared approximation errors at different frequencies,

whereas the MSE in eq. (2.13), the objective function to derive the Butter-

worth filters, gives different weights to different frequencies. Solving the

minimization problem in eq. (3.8), as explained in Baxter and King (1999,

Appendix B), we can obtain the weights of the approximate filter as fol-

lows.

âj � 1

2�����h�(e�i�)e i�j d��for j�1�2����k (3.9)

Evaluating the integral with some cutoff frequency, �c , we have
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â0 ��c��âj �sin(j�c )

j�c

�for j�1�2����k (3.10)

We call the filter with these weights the finite approximation (FA) filter.

Further, Baxter and King (1999) consider a constraint so that the filter has

unit weight at the zero frequency, which is equivalent to the filter weights

sum to unity. Then, we obtain the so-called Baxter-King (BK) filter.

b0 �a0 ���bj �aj ���for j�1�2����k (3.11)

��1��
j��k

k

aj

2k �1
(3.12)

The band-pass filters are similarly computed as subtracting the coefficient

bj of a high frequency �u and that of a low frequency �l .

b�bp j �bj (�u )�bj (�l )�for j�1�2����k (3.13)

4. Empirical Results

We use real GDP data of Japan from NEEDS (Nikkei Economic Elec-

tronic Databank System, March 2006). We choose annual real GDP based

68SNA because it is available for the longest periods with a consistent

data compiling method. The sample period ranges from 1955 to 2000.

The base year is 1990. The sample size is 46. We take logarithm of real

GDP data. To compute the metric discussed in the previous section, we

compute the power spectrum of the real GDP. We estimate the power

spectrum by the Fourier transform of the original series and by the

ARMA-type estimating methods that Parzen (1969) and Berk (1974) have
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proposed. We estimate ARMA model with Box-Jenkins procedure, and

select AR (4) model, based on the statistical significance of the parameter

estimates, the information criterion, and Ljung-Box Q statistics. Table 1

shows the estimating result of the ARMA model with the annual real

GDP data.

We compute the metric of filtering distortion (eq.2.13) in case that

we intend to extract cyclical component less than eight years with annual

data. The metric can be computed by using either numerical integration or

discrete summation. We use Matlab software to compute the metric. Both

computations give the same results as long as the number of grid points of

discrete summation is large enough. We use 32,000 equally spaced grid

points. To save space, we only report the results of the discrete summa-

tion.

First of all, the ad hoc choice of the smoothing parameter value gives

rise to great distortion. It becomes clear if we compare the result from the

Table 1 Estimation results of ARMA model

Parameter Estimate (Standard Error) P-value�1�2�3�4

CONSTANT

１．５０６１
‐０．７４５７
０．５３５７
‐０．３１６９
０．２７４１

（０．１２４６）
（０．２４５４）
（０．２４０４）
（０．１２２３）
（０．０６６２）

［０．０００］
［０．００２］
［０．０２６］
［０．０１０］
［０．０００］

Log-Likelihood

Schwartz Bayes Information Criterion

１１３．１４２０
‐１０３．５７００

Q-stat (6lags)

Q-stat (12lags)

Q-stat (18lags)

４．３９６０
９．６３４０
１８．３２４８

０．１１１０
０．２９１７
０．１９２４

Model: yt �constant��1 yt�1��2 yt�2��3 yt�3��4 yt�4��t�yt �log (real GDPt )�t : error term at time t.
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Butterworth filter of order two with those from the HP filters. Baxter and

King (1999) and Hassler et al. (1994) argue that it would be better to set

the smoothing parameter value to ten for annual data. Pedersen (2001)

points out the value should be around five for annual data. As shown in

Table 2, these values give poorer performance than the sine-based Butter-

worth filter with d=2. Secondly, the FA filters make the worst results. BK

filters relatively perform well. These filters do not necessarily give better

performance for longer lag length due to the cyclical nature of the sine

function. The smallest performance is given by the tangent-based Butter-

worth filters. Finally, comparing Table 2 with Table 3, we find that these

results do not depend on how to estimate the power spectrum of the time

series.

5. Discussion

We compare distortions of several time-invariant linear filters. We find the

tangent-based Butterworth filters give the best performance. This is be-

cause these filters have minimum exacerbation and the gain of one over

the passband and zero over the stopband. Some caveats are in order. First

of all, we do not know how to specify the order of the tangent-based But-

terworth filter. While a greater order reduces leakage and compression, it

requires more leads and lags to compute cyclical component at each point

of time. Thus, the size of revisions would be large when new information

becomes available. Second, we do not consider time-varying filters. Chris-

tiano and Fitzgerald (2003) propose time-varying filters within a frame-

work of minimization problem of mean square errors, as studied by Wie-

ner and Kolmogorov. Finally, we need to study other macroeconomic time

series before we conclude that the Butterworth filters are generally useful
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Table 2 Filtering Distortion (discrete sum): ARMA-Based Spectrum

Filters (restrictions) MSE_f (eq.2.13) multiplied by 1000

HP (lambda=5) １．２２４６
HP (lambda=10) １．７４７４
HP (lambda=100) ６．０６５５
HP (lambda=400) １１．７４９１
Butterworth (sine: d=2) ０．９５８８
Butterworth (sine: d=4) ０．４３００
Butterworth (sine: d=6) ０．２８１１
Butterworth (sine: d=8) ０．２０９４
Butterworth (sine: d=10) ０．１６７０
Butterworth (tangent: d=2) ０．８０４６
Butterworth (tangent: d=4) ０．３６５４
Butterworth (tangent: d=6) ０．２３９５
Butterworth (tangent: d=8) ０．１７８５
Butterworth (tangent: d=10) ０．１４２４
Finite Approximation (3lags) ２５．２２５２
Finite Approximation (4lags) ２５．２２５２
Finite Approximation (5lags) ６．１６００
Finite Approximation (6lags) １．０２７０
Finite Approximation (7lags) ６．５５８８
Finite Approximation (8lags) ６．５５８８
Finite Approximation (9lags) １．７１６５
Finite Approximation (10lags) ０．６１４６
Finite Approximation (11lags) ２．７８１８
Finite Approximation (12lags) ２．７８１８
Baxter & King (3lags) １．９６７６
Baxter & King (4lags) １．５８７２
Baxter & King (5lags) ０．７０２９
Baxter & King (6lags) ０．７４５８
Baxter & King (7lags) １．３４６０
Baxter & King (8lags) １．１５９２
Baxter & King (9lags) ０．４６４３
Baxter & King (10lags) ０．４８８２
Baxter & King (11lags) １．００６４
Baxter & King (12lags) ０．９０１２
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Table 3 Filtering Distortion (discrete sum): Fourier-Based Spectrum

Filters (restrictions) MSE_f (eq.2.13) multiplied by 1000

HP (lambda=5) ７．３６９５
HP (lambda=10) ８．０８５４
HP (lambda=100) １６．８０１３
HP (lambda=400) ２１．４２９５
Butterworth (sine: d=2) ６．１６１８
Butterworth (sine: d=4) ２．９９０８
Butterworth (sine: d=6) １．９１４２
Butterworth (sine: d=8) １．３８６８
Butterworth (sine: d=10) １．０８５０
Butterworth (tangent: d=2) ５．２７０３
Butterworth (tangent: d=4) ２．５３１９
Butterworth (tangent: d=6) １．６０９１
Butterworth (tangent: d=8) １．１６６４
Butterworth (tangent: d=10) ０．９１４８
Finite Approximation (3lags) ２４．４０４２
Finite Approximation (4lags) ２４．４０４２
Finite Approximation (5lags) ８．９４４９
Finite Approximation (6lags) ３．６８５６
Finite Approximation (7lags) ６．８６８０
Finite Approximation (8lags) ６．８６８０
Finite Approximation (9lags) ３．４６７９
Finite Approximation (10lags) ２．２２９９
Finite Approximation (11lags) ３．２３６２
Finite Approximation (12lags) ３．２３６２
Baxter & King (3lags) ９．５３８８
Baxter & King (4lags) ８．１８０１
Baxter & King (5lags) ４．７２４２
Baxter & King (6lags) ３．８８３０
Baxter & King (7lags) ５．０６８１
Baxter & King (8lags) ４．６２５６
Baxter & King(9lags) ２．７６６２
Baxter & King(10lags) ２．３８０６
Baxter & King(11lags) ３．２６０９
Baxter & King(12lags) ３．０５８５
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