Exact and Pseudo P-values in the Wilcoxon

Unpaired Test with Ties

Takeshi Otsu
Abstract

This paper investigates the discrepancy between the exact and the
pseudo p-values of the Wilcoxon unpaired test statistics for several tie pat-
terns. The findings are summarized as follows. First, the discrepancy be-
tween the exact and the pseudo p—values tends to be less than 5% when
the sample size is greater than 15 for each sample set and the size of the
ties takes 15% at most in the sample. Secondly, the exact and the pseudo
p-values are very similar at the significance levels from 0.01 to 0.1. Since
these levels are frequently used in practice, the statistical testing is less
likely to be misleading. Thirdly, existence of mid ranks or a large size of
the ties beyond 20% in the sample deteriorates approximations by the
pseudo p-values. Finally, the exact p-values are easily obtained with a
simple algorithm on a worksheet application when each sample size of

two data groups is less than or equal to 16.

1. Introduction

The Wilcoxon unpaired test is widely used in the biomedical sciences
and the social sciences, where we need to perform a statistical test
whether or not two sets of samples come from the same distribution. Al-

though it was named after Wilcoxon (1945), many
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other scientists proposed similar tests. Kruskal and Wallis (1952) and
Kruskal (1957) gave a useful historical review, and we can find an exten-
sive bibliography in Jacobson (1963).

The basic idea is simple and explained in a standard text book, such
as Lehmann (1998). To compute the Wilcoxon’s rank-sum statistic, we
simply rank all the combined sample points, and sum up ranks for one of
the sample sets. To compute the significance probability (or p-value) un-
der the null distribution, we just count the number of combinations of the
observed points that give rise to values less than or equal to the Wilcoxon
statistic, and divide it by the number of all the possible combinations of
the combined sample points. Although the idea is simple, it is time-
consuming and sometimes infeasible to calculate the numerator of the
significance probability. This computational burden spawns a lot of stud-
ies for approximation and efficient computational methods. Tabulation is
one way to deal with the computational burden. Jacobson (1963) and Ver-
dooren (1963) used the method proposed by Fix and Hodges (1955) to
tabulate critical values, which they compared with those of the earlier
studies. Verdooren (1963) presented tables of critical values of the Wil-
coxon’s rank-sum statistic at significance levels of 0.001, 0.005, 0.01,
0.025, 0.05 and 0.10 for sample sizes of 25 or less. Jacobson (1963) gave
the critical-value tables for significance levels of 0.005, 0.01, 0.025, and
0.05 when sample sizes were 29 or less. In practice, however, the com-
puted statistics at hand may not be covered in the tables. Therefore, it
would be convenient to compute p-values for statistical testing.

Another strand in the literature explores the accuracy of approxima-
tion. Mann and Whitney (1947) rigorously examined statistical properties

of the Wilcoxon statistic, or its equivalent called the Mann-Whitney U
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statistic, to prove that its limit distribution is normal when there is no tie
in each sample. Kruskal and Wallis (1952, pp. 591-595), Hodges, Ramsey,
and Wechsler (1990) and Lehmann (1998, p. 17) reported the accuracy of
the normal approximation with a continuity correction. Generally speaking,
the approximation is not good for small p—values. Kruskal and Wallis
(1952) found an anomaly that the continuity correction made the approxi-
mation worse when the p-value was less than or equal to 0.02. Hodges,
Ramsey, and Wechsler (1990, p. 251) pointed out that their approxima-
tion did not correct the kurtosis error that tended to increase the p-value,
and the continuity correction also increased the p-value. Therefore, with-
out the kurtosis correction, the continuity correction came to substantially
overestimate the true value.

Taking advantage of the symmetry of the U statistic, Fix and Hodges
(1955, p. 311) obtained the Edgeworth approximation formula with the
first six moments and a continuity correction, which included the kurtosis-
error correction. Despite its accuracy, the complexity of the formula limits
its usefulness. Hodges, Ramsey, and Wechsler (1990) proposed a simpli-
fied formula, and showed that both of the formulae gave a good approxi-
mation to the exact p-values, as long as each sample size was 12 or more.
Jacobson (1963) compared the normal approximation to critical values
with the exact values, showing its poor performance especially at lower
significance levels. Verdooren (1963) examined the accuracy of the nor-
mal and the Edgeworth approximations when one of the sample sets had
observations of 25 or more, and showed the Edgeworth expansion gave a
better accuracy.

By and large, the literature indicates that the exact significance prob-

ability should be used when sample sizes are less than or equal to 25, and
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the Edgeworth expansion with kurtosis-error and continuity corrections
works reasonably well when sample sizes are more than 25. Fortunately,
technological advance allows us to compute the exact p-values. Particu-
larly, the computational method proposed by Fix and Hodges (1955) is
easily programmed and efficiently works even with worksheet softwares.
One of the remaining problems is how to deal with samples including ties.
Since all the argument up to here only applies to untied samples, we need
further investigation on effects of tied observations.

When ties are present in the samples, the mean of the Wilcoxon’s
rank-sum statistic remains same as that without ties, but the variance and
higher moments need modification. Kruskal (1952) and Kruskal and Wal-
lis (1952) derived the mean and variance. Lehman (1961) investigated ac-
curacy of the normal approximation with corrections for continuity and
ties. It examined six artificial data sets, one of which had no ties and oth-
ers had different patterns of ties, and found very poor approximations
when samples were heavily tied. Further, tail probabilities were badly
approximated because the tails of the discrete distribution were thinly
populated and the sample sizes were small. Continuity corrections were
advisable for better approximations. Interestingly, the approximation at the
significance level of 0.01 was better than that at the level of 0.05 or 0.1.
It also confirmed the working guide, suggested by Kruskal and Wallis
(1952, p. 587), that the correction for ties in the normal approximation
would not change estimated values of significance probability by more
than 10%, with sample sets of ten or fewer observations if they involved
ties not more than one-fourth of the sample points. Klotz (1966), however,
concluded that the erratic nature of the statistic values ruled out any

smooth approximation. It derived conditional moments through the fourth
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order under the null distribution for the Edgeworth expansion with tie cor-
rections. It compared the normal and the Edgeworth approximations with
the exact p-values, and found the irregularity of the distribution when the
sample size was less than or equal to 12 for each group and 22 in all at
most. Therefore, it would be necessary to compute the exact probability
values. '

The purpose of this paper is to compare exact significance probabili-
ties with ties to the pseudo probabilities computed assuming no ties. In
general, observations with ties make computational burden of p-values
heavier than those without ties. Therefore, if researchers need to work in a
limited computational resource environment such that only worksheet soft-
wares are available, it may be prohibitive to obtain the exact p-values for
tied samples. Even statistical software packages may not produce exact p-
values with ties. Bergmann, Ludbrook, and Spooren (2000) reviewed 11
commercial statistical packages to find that 9 packages took ties into con-
sideration in large-sample approximations, but only four packages gave
exact p-values for tied samples. Worse, documentations of these packages
tended to inadequately describe algorithms and correction methods. Thus,
statistical testing based on these p-values may lead up to a wrong conclu-
sion in small samples. If exact p-values are not available, it might be bet-
ter to use pseudo p-values under the false assumption of no ties than the
large sample approximations. Verdooren (1963, p. 179) conjectured that
we might still use the critical values without ties if the size of the ties
were not very large. Fortunately, the method proposed by Fix and Hodges
(1955) works efficiently even with worksheet softwares to compute the
exact p-values with untied observations. Then, researchers need to under-

stand to what extent a pseudo p-value deviates from the corresponding
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exact p-value, so that they avoid reaching wrong statistical conclusions.
To investigate the discrepancy between the exact and the pseudo p-
values, we conduct simulations with artificial data with several patterns of
ties considered in the literature. The findings are summarized as follows.
First, the discrepancy between the exact and the pseudo p-values tends to
be less than 5% when the sample size is greater than 15 for each sample
set and the size of the ties occupies 15% at most in the combined sample.
Secondly, the exact and the pseudo p-values are very similar at the sig-
nificance levels from 0.01 to 0.1. Since these levels are frequently used in
practice, the statistical judgment is less likely to be mislead. Thirdly, exis-
tence of mid ranks or a large size of the ties beyond 20% in the sample
deteriorates approximations by the pseudo p-values. Finally, we find it
feasible to compute the exact p-values with a worksheet application such
as Excel (Microsoft) when each sample size is less than or equal to 16. In
the following section, we briefly explain how to compute the exact and
the pseudo p-values. In Section 3, we present simulation results to see
how the pseudo p-values deviate from the exact values. The final section

is allocated to discussion of the future research topics.

2. Exact and pseudo p-values

Suppose we have two independent random samples X; ,---, X,, and
Y,, -+, Y, from two populations with unknown cumulative distribution
functions, F' and G, respectively. Then, we have interest in testing the hy-
pothesis H, : F(t) = G(t) against the one-sided alternative hypothesis
H, :F(t)=G(t) and F(t) # G(¢t) for some . Wilcoxon (1945) pro-

posed the statistic
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WZXm:”i (1)

where r;, - ,r, are the ranks of X;,---, X, in the combined sample.
Equivalently, Mann and Whitney (1947) used the following statistic to

show its asymptotic normality as m and n go to infinity:

Uzzm:r,. _ﬂn_g_—l—‘l_) (2)
i=1

Suppose the sample set of X;, -, X,, gives a smaller mean of the rank
sum than the other sample set. Then, the lower tail probability under the
null distribution is written
as Prob (U < t| H,), which we call the p-value. It is imperative to com-
pute the accurate p-value for statistical testing. As shown in Lehmann
(1998, pp. 12-13), under the null hypothesis, these statistics have symmet-
ric distributions about m(m + n+1)/2 when there is no tie in the sample.
Then, once we know the exact one-sided tail probability, we can use it for
one-sided tests as well as two-sided tests. Although the presence of ties
makes the null distribution asymmetric and dependent on the tie patterns,
Klotz (1966) showed the statistics would have a symmetric null distribu-
tion conditional on a tie pattern if two samples have the same size (m =
n) or if the tie patterns are symmetric. Thus, it might be still useful to use
the doubled p-values for two-sided tests in practice, at least approximately.
It is costly to tabulate the p-values as a function of m, n, and f, or
critical values at each significance level without ties, and almost impossi-
ble with ties. In the literature through the middle of 1980’s, several algo-
rithms were proposed to compute the p-values under the constraints of
storage sizes and processing speeds of computers. For example, Klotz

(1966) extended a recurrence relation of probabilities of the statistic U of
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Mann and Whitney (1947) into an algorithm to enumerate the exact null
distribution with ties. Hill and Peto (1971) presented an algorithm that re-
cursively calls a subroutine to make storage constraints unbinding. Mehta,
Patel, and Tsiatis (1984) applied a network algorithm to reduce running
times. Soms (1977) also proposed a similar algorithm. All these algo-
rithms require a lot of do-loop processing, and would be suitable for pro-
gramming in Fortran or C language. Since worksheet applications are not
good at do-looping, however, it may not be practical to compute the exact
p-values when only a worksheet application is available.

To compute exact p-values when ties are present, we use the algo-
rithm presented by Richards and Byrd (1996), which is logically simple
and materialized in Fortran language, because it requires less do-loop
processing than other preceding algorithms and comfortably works on
worksheet applications. The basic idea of Richards and Byrd (1996) is as
follows. First, we pick up one of the two sample sets, which has a smaller
mean of the ranks. Then, we trade equal numbers of observations between
the samples to identify combinations to produce rank sums lowér than or
equal to the rank sum of the chosen sample group. If we have two sample
sets, each of which haslOsample points, the possible number of tradings
amounts to 1023 (= Z:il 10C; ). Thus, the algorithm computes 2024 sum-
mations for the two sample sets, since no summations are necessary in
cases of ome-for-one (,0C; = 10) and ten-for-ten (,,Cy, = 1) tradings:
2024 = (1023-11) x 2. Since all the possible combinations of the rank
sums are 184, 756 (,0Cy), it substantially reduces computational burdens.
To carry out investigations here, we modified the Fortran program so that
it could handlevtwo data sets of 42 samples in all, 21 samples for each at

most, with double precision. Further, in the experimental process, we

_8___



Exact and Pseudo P-values in the Wilcoxon Unpaired Test with Ties

translated the original Fortran program into the Visual Basic program in
Excel (Microsoft) to see to what extent it would be feasible to obtain ex-
act p-values only with the worksheet application. We checked the program
against data in the literature such as Bergmann, Ludbrook, and Spooren
(2000, p. 74) and Lehman (1961, p. 294).

Turning to the pseudo p-values, that is, the p-values computed with-
out taking account of ties, we use the method proposed by Fix and
Hodges (1955). Let m . n positive integers, and A(u,m,n) the number of
combinations in which it is possible to choose exactly m nonnegative inte-
gral summands, none greater than n whose sum does not exceed u. If T (u,

m, n) denotes the distribution function of U in eq. (2), we can write

Prob(U_é_ulHo):w(u,m,n):M €))

m-+n
m
To compute A(u, m, n), we consider the number of combinations without

the constraints of none greater than n. That is,

Ay (u,m) = Au,m,o0) 4

where Aq (4, m) and A(u, m, n) are 0 when u < 0. When all the variables
of summation are integers, we have
Au,m,n) = Ay (u,m)— > Aw—t,m —1,1) (5)
t=n+1
Using this relation, Fix and Hodges (1955) expressed the restricted parti-
tion function A in terms of the unrestricted partition functions as follows:
= 1
AGw,m,n) =Y (- DAy (u = kn = Sk Gk + 1,m = 1) (6)
k=0

where
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Ak(u,m—k)ziao(v,k)Ao(u——v,m—k) (7)
v=0
and
ao(u7m):A0(u7m)_A0(u_lam) (8)

The boundary conditions are Ay (0,m) =1 and Ay (u,1)=u+1. As
noted by Fix and Hodges (1955), Leonhard Euler, a Swiss mathematician,
studied in the early 1900’s the function a, that gives the number of com-
binations partitioning the exact value u into m parts. We programmed an
algorithm to compute a, in Visual Basic included in Excel, and tabulated
Ao (u,m) on the worksheet for # < 100 and m < 12, using the relation of
eq. (8). We checked the values with those of Fix and Hodges (1955) to
confirm our algorithm worked properly. To reduce computational costs,

we use the following convenient recursive relation (Fix and Hodges, 1955,

p. 303) for 101 < u <1000 and 13 < m < 30:

Agu,m)=A4,(u,m —1)+A,(u —m,m) 9

This recursion formula can be verified using 0-1 sequences examined in
Mann and Whitney (1947). In the Appendix A, we give a simple example
to confirm the validity of this relation. We used eq. (6) to compute A(u, m,
n) and then calculated the pseudo p-value with eq. (3). It took less than a

few seconds to obtain the pseudo p-value with the worksheet software.

3. Simulation Results

Before we examine simulation results, we briefly report computa-
tional time to obtain exact p-values with Excel 2000 (Microsoft), using

the algorithm of Richards and Byrd (1996). We used a laptop computer
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with Pentium III processor with 500 MHz (megahertz) and 256 MBs
(megabytes) memories. When each sample had 16 data points, it took 10
seconds. The computation was getting slower and slower with a sample
size of more than 16. When each data set had 17 samples, it took one
minute and a half. The computational time tripled to 5 minutes when the
sample size was 18, and further tripled to 16 minutes when it was 19.
Then, it jumped up to 70 minutes for the sample size of 20. Therefore, it
would be practical to compute exact p-values with the worksheet software
when the sample size is less than or equal to 16 for each sample.

In our simulation, we consider tie patterns in Klotz (1966, pp. 777-
779). If we write a tie pattern as (1, 2, 1), it means 1, 2, 2, 4 in rank. It is
converted to 1, 2.5, 2.5, 4 in mid rank, the averaged rank of the tied sam-
ples, to compute the Wilcoxon statistic. When we write (1, 2, 1) x 2, it
indicates (1, 2, 1, 1, 2, 1), that is, 1, 2.5, 2.5, 4, 5, 6.5, 6.5, 8 in mid rank.
According to the literature that studied the precision of the normal and the
Edgeworth approximation, the approximation to the tail probabilities was
worse than that to the middle-part probabilities (see, for example, Kruskal
and Wallis 1952, Lehman 1961, Jacobson 1963, Hodges, Ramsey, and
Wechsler 1990, and Lehmann 1998). Thus, we focus on the tailed prob-
abilities from 0.01 to 0.1, which correspond to the significance levels fre-
quently used in practice.

Tablelshows simulation results of sample sizes less than or equal to
16. When the statistic takes the mid-ranked value such as 17.5, 21.5, 38.5
and so forth, the difference rate, that is, the rate of change from the exact
p-value to the pseudo p-value, tends to be more than 19%. The largest
discrepancy 69% is observed for the statistic 36.5 in CASE 4 though its

p-value is so small that it may not be used as a significance level in prac-
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tice. On the contrary, the difference rate is less than 10% at the signifi-
cance levels more than 0.01 when the statistic is not mid-ranked. This is
partly because the mid-ranked statistic is truncated to a nearest smaller
integer to compute the pseudo p-value. Then, the pseudo p-value underes-
timates the exact value. Although it is somewhat subjective to determine
what error rates should cause a serious problem, Hodges, Ramsey, and
Wechsler (1990, p. 251) claimed that a 15% would be too large and not
trivial. In their view, even if the sample sizes are small, it can be said that
the pseudo values give a good approximation except when the statistic is
mid-ranked. The largest difference in absolute value is 0.024 of the statis-
tic 21.5 in CASE1,which is about 18% of the exact value.

Turning to Table 2, the difference rates are still bumpy across the sta-
tistics, but mostly smaller in absolute value than those in Table 1. This
suggests that a larger sample size ameliorates the pseudo-value approxi-
mations. Interestingly, the approximation is better for the mid-ranked val-
ues than the just-ranked ones in some cases, such as in the statistic of
106.5 in CASE 7 or 78.5 in CASE 8. The difference rates are less than
15% for the p-values ranging from 0.01 to 0.1. The largest difference is
0.011 when the statistic is 95.0 in CASE 8,8% of the exact value that is
less than half of the value, 18% in CASE 1 mentioned above. Therefore,
the larger sample size in all, the better the approximation. In terms of tie
patterns, when the size of the ties has a small share in the whole sample,
the accuracy of approximation is substantially improved. In CASE 10, the
tie takes about 8% in the combined sample, while it occupies20%or more
in other cases of Table 2. This is consistent with the conjecture of Ver-
dooren (1963, p. 179) mentioned before.

In Table 3, we find that the mid ranks in higher ranks cause the dif-
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ference rates more bumpy than those in lower ranks. The data of CASE
15 are heavily tied in higher ranks: there are six 16th’s and seven 22nd’s
in rank. In contrast, those of CASE 16 are heavily tied in lower ranks.
Comparing these cases, the difference rates go up and down more sharply
in CASE 15 than in CASE 16. The tie patterns of CASE 15 and CASE
16 are similar to CASE 8 and CASE 9 in Table 2: the size of the ties mo-
notonically increases or decreases. In these cases, the approximation is
better for the mid-ranked values than the just-ranked ones. The compari-
son of CASE 12 with CASE 13 indicates that the mid ranks may substan-
tially deteriorate the approximation by the pseudo p-values, annihilating
the benefit of a smaller size of the ties, only 7% in the whole sample.
Generally, larger the sample sizes, lower the difference rates. However,
the pseudo p-value seems give a better approximation when both data sets
increase their sample sizes in a balanced manner. The observations are
evenly tied in CASE 5 of Table 1, CASE 10 of Table 2, CASE 12 and
CASE 13 of Table 3. When the number of observations is same for both
sample sets, the difference rates decrease as more observations are added.
When the number of samples increases in one of the sample sets less than
in the other as in CASE 12 and CASE 13, however, the approximation
does not improve or even deteriorate. The largest difference in absolute
value, 0.008, is observed for the statistic 161.5 in CASE 12, at approxi-
mately 10% significance level.

Finally, in Table 4, the difference rates are less than 5% in many
cases when both sample sizes are more than 15 except CASE 19. Al-
though the error rate$ are relatively large in CASE 19, they are still less
than 10% in spite of the mid-ranked statistics, comparable with CASE 10
and better than CASE 5 and CASE 12 that have similar tie patterns. Thus,
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if each of the sample sets has more than 15 observations, the pseudo p-
values will give close approximations to the exact p-values. The largest
difference is 0.005 in absolute value, when the statistic is 287.5 in CASE
18. It is only 5% of the exact value. It is noted that the size of the ties in

Table 4 occupies 15% at most in the combined sample.
4. Discussion

This paper investigates the discrepancy between the exact and the
pseudo p-values of the Wilcoxon unpaired test statistics for several tie pat-
terns. The main findings are summarized as follows. First, we find that the
discrepancy between the exact and the pseudo p-values tends to be less
than 5% when the sample size is greater than 15 for each sample set and
the maximum size of the ties takes 15% in the sample. Secondly, the ex-
act and the pseudo p-values are very similar at the significance levels
from 0.01 to 0.1. Since these levels are frequently used in practice, the
statistical testing is less likely misleading. Thirdly, the pseudo p-values
may not approximate the exact values very well when the mid ranks exist
or when the size of the ties occupies greater than or equal to 20% in the
whole sample. Finally, it is feasible to obtain the exact p-values with a
worksheet application when each sample size is less than or equal to 16.

Several caveats are in order. We focus on the p-values from 0.1 to
0.01, which correspond to the significance levels frequently used in prac-
tice, because the literature expects the middle-part probabilities are ap-
proximated fairly well. However, we might need to investigate the extent
of approximation in the middle part for completion. Further, we do not
examine degrees of asymmetry when ties exist. Thus, in some cases, it

may not be appropriate to use doubled p-values for two-sided tests. Fi-
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nally, it would be useful to develop an algorithm to compute exact p-
values with tied samples, which requires less do-loop processing. Since
worksheet softwares are prevailing, a do-loop-free algorithm would be
convenient to conduct the Wilcoxon unpaired test even in a poor comput-

ing environment. These are left for the future research topics.
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Appendix A : Recursion Fromula
In this appendix, we give a simple example to confirm the relation of eq.
(9). First, we recursively apply eq. (8) to itself to obtain the following

equation:

m—1

Ao w,m) = ao(u—j,m)+ Ay (u—1,m) (10)

j=0

Suppose we have u = 3 and m = 2. Then, we have

A (3,2)=a;(3,2)+a,(2,2) + 4, (1,2) (11)

Now we note, letting »; the ith element of U in eq. (2),

u = —i (12)

where 7, , - ,7,, rm are the ranks of X; ,---, X, in the combined sample as
in eq. (1). Then, u;, =3 and u, =2 in the example here. Since
u, =1+2=0+43,4,(3,2) is equal to 2. In terms of the rank r;, the
summations are 2 + 4 and 1 + 5. That is, the sample points of the sample

set X take the ranks of 2 and 4, or 1 and 5. Let us denote O to indicate
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the location of the samples from the X, andlfor the samples from the

other set. Then, we can construct the 0-1 sequences as follows:

a0(3,2):M1 = 1+2, W =2+4

rank (r;) 1 23 4 5 6
location of X; 1 01011

In this table, the first 1’ precedes '0’ twice, or two 0’s, and the second
one precedes ’0° once. Therefore, the 1’ precedes ’0’ three times in all,

which corresponds to the number of u; (= 3). Similarly, we have

ay(3,2):u; =043, W=1+5

rank (r;) 1 2 3 4 5 6
location of X; 011101
ay2,2)1uy, =141, W=2+3

rank (r;) 1 23 456
location of X; 1 00111

ag(2,2):u, =0+2, W=1+4
0 2

W
(@)

rank (r;) 1 2 3 4
location of X; 0110

—_
—_

Suppose we cut the part of the 0-1 sequence left to the first *0” and slide
the remaining sequence to the left. Then we have the following 0-1 se-

quences:

ao(l,l):u3 :1, W:2

rank (r;) 1 23 456
location of X; 1 0

—
—_

a0(3,l):u1 :3, W=4

rank (r;) 1 23 456
location of X; 11

—
<
—
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ap (0, 1):u; =0, W =1

rank (r;) 1 23 456
location of X; 011111
ay2,1)1uy, =2, W=3

rank (r;) 1 23 456
location of X; 1 106111

Consequently, we have converted m to m — 1. Note we renumbered the
subscripts of ;s in descending order of their values. We may rewrite eq.

(11) as:

Ay (3,2)=ay(3, 1) +ay(2,1) +ao(1,1) +
ao (0, 1) + 4, (1,2)

(13)

or, compactly,

A (3,2) =4, (3, D)+ 4, (1,2) (14)

In general, we have the recurrence relation of eq. (9) in Section 2.
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Exact and Pseudo P-values in the Wilcoxon Unpaired Test with Ties

Table 1 Discrepancy between exact and pseudo p - values: m +1 <16

CASE 1 tie pattern: (1,1,2,1,1,2,1,1), sample sizes: (m, n)=(5, 5)

Wilcoxon exact pseudo difference rate (%) difference

statistic  p - value p - value (loge{exact/psendo) x 100) (pseudo - exact)
15.0 0.003968  0.003968 0.0064 0.000000
16.0 0.007937  0.007937 -0.0062 0.000000
17.5 0.023810 0.015873 -40.5485 -0.007937
16.0 0.047619  0.047619 0.0001 0.000000
20.0 0.071429 0.075397 5.4061 0.003968
21.5 0.134921 0.111111 -19.4159 -0.023810

CASE 2 tie pattern: (1,1,1,2,1,1,2,1), sample sizes: {(m, n)=(5, 5)

Wilcoxon exact pseudo difference rate difference

statistic p - value p- value (log.(psendo/exact) x 100) (pseudo - exact)
15.0 0.003968  0.003968 0.0064 0.000000
16.5 0.011905  0.007937 -40.5485 -0.003968
17.5 0.019841 0.015873 -22.3130 -0.003968
19.0 0.051587  0.047619 -8.0037 -0.003968
20.5 0.001270  0.075397 -19.1057 -0.015873
22.0 0.142857 0.154762 8.0044 0.011905

CASE 3 tie pattern: (1,3,1,2,1,1,1), sample sizes: {(m, n)=(5, 5)

Wilcoxon exact pseudo difference rate difference

statistic  p - value p - value (log.(pseudo/exact) X 100) (pseudo - exact)
15.0 0.003968 0.003968 0.0064 0.000000
16.5 0.011905  0.007937 -40.5485 -0.003968
18.0 0.015873 0.015873 0.0001 0.000000
19.0 0.043651 0.047619 8.7007 0.003968
20.0 0.071429 0.075397 5.4061 0.003968
22.0 0.146825 0.154762 5.2646 0.007937

CASE 4 tie pattern: (1,2,1,1,1,1,2,2,1,2), sample sizes: (m, n)=(8, 6)

Wilcoxon exact pseudo difference rate difference

statistic  p - value p- value (loge(pseudo/exact) x 100) (pseudo - exact)
36.5 0.000666 0.000333 -69.3146 -0.000333
38.5 0.001665 0.001332 -22.3143 -0.000333
40.0 0.003996 0.003996 0.0001 0.000000
42.5 0.010656  0.009990 -6.4538 -0.000666
45.0 0.027306  0.029637 8.1918 0.002331
48.5 0.073260  0.070929 -3.2334 -0.002331
50.5 0.116883 © 0.114219 -2.3055 -0.002664

CASE 5 tie pattern: (2,2)x2, sample sizes: (m, n)=(8, 8)

Wilcoxon exact pseudo difference rate difference

statistic = p - value p- value (log.(pseudo/exact)x 100) (pseudo - exact)
40.0 0.001088  0.000932 -15.4334 -0.000156
44.0 0.005905  0.005206 -12.6006 -0.000699
50.0 0.035664 0.032479 -9.3559 -0.003185
54.0 0.086713  0.080264 -7.7280 -0.006449
56.0 0.126263 0.117249 -7.4064 -0.009014 |

pseudo p - values are computed with eq.(3).
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Table 2 Discrepancy between exact and pseudo p - values: 21 £ m+n <25

CASE 6 tie pattern: (3,3,4,3,4,5,3), sample sizes: {(m, n)=(15, 10)

Wilcoxon exact pseudo difference rate difference
statistic  p - value p - value ({log.(pseudo/exact) x 100) (pseudo - exact)
145.0 0.001919  0.002218 14.4649 0.000299
150.5 0.005607 0.005759 2.6759 0.000152
155.5 0.012308 0.013208 7.0578 0.000900
159.0 0.020008 0.023762 12.7965 0.002854
166.0 0.052686  0.057567 8.8596 0.004881
173.0 0.113084 0.118977 5.0796 0.005893
CASE 7 tie pattern: (3,3,4,3,4,5), sample sizes: (m, n)=(12, 10)
Wilcoxon exact pseudo difference rate difference
statisitic p - value p- value (loge(pseudo/exact) x 100) (pseudo - exact)
79.0 0.000005  0.000003 -48.0334 -0.000002
95.0 0.001381 0.001718 21.8409 0.000337
106.5 0.016491 0.017914 8.2766 0.001423
110.0 0.030159  0.034575 13.6657 0.004416
115.0 0.063757 0.070119 9.5111 0.006362
120.0 0.121809 0.127151 4.2925 0.005342
CASE 8 tie pattern: (1,2,3,4,5,6), sample sizes: (m, n)=(10, 11)
Wilcoxon exact pseudo difference rate difference
statistic p- value p- value (loge(pseudo/exact)x 100) (pseudo - exact)
65.0 0.000340  0.000394 14.7620 0.000054
75.0 0.004050 0.006359 25.0519 0.001409
78.5 0.011414 0.012078 5.6521 0.000664
83.0 0.026803  0.030500 12.9228 0.003697
86.5 0.046479  0.049309 5.9102 0.002830
89.5 0.073359 0.075868 3.3635 0.002509
95.0 0.146001 0.157186 7.3816 0.011185
CASE 9 tie pattern: (6,5,4,3,2,1), sample sizes: (m, n)=(10, 11)
Wilcoxon exact pseudo difference rate difference
statistic  p - value p - value (loge(pseudo/exact)x 100) (pseudo - exact)
67.0 0.000740  0.000760 2.6429 0.000020
75.0 0.005648 0.00635%9 11.8605 0.000711
78.5 0.010430  0.012078 14.6675 0.001648
83.0 0.026931 0.030500 12.4464 0.003569
86.5 0.046389  0.049309 6.1040 0.002920
89.0 0.067454  0.075868 11.7554 0.008414
93.5 0.124627 0.125602 0.7797 0.000975
CASE 10 tie pattern: (2,2)x6, sample sizes: (m, n)=(12, 12)
Wilcoxon exact pseudo difference rate difference
statistic p-value p-value (loge(pseudo/exact)x 100) {pseudo - exact)
104.0 0.003666  0.003406 -7.3601 -0.000260
110.0 0.010929 0.010245 -6.4669 -0.000684
114.0 0.020541 0.019361 -5.9184 -0.001180
120.0 0.046726  0.044367 -5.1807 -0.002359
124.0 0.075053 0.071584 -4.7325 -0.003469
128.0 0.114275  0.109460 -4.3045 -0.004815

pseudo p - values are computed with eq.(3).



Exact and Pseudo P-values in the Wilcoxon Unpaired Test with Ties

Table 3 Discrepancy between exact and pseudo p - values: 26 < m +1n < 30

CASE 11 tie pattern: (3,3,4,3,4,5,3,5), sample sizes: (m, n)=(15, 15)

Wilcoxon exact pseudo difference rate difference
statistic  p - value p - value (loge(pseudo/exact)x 100) (pseudo - exact)
170.0 0.003898 0.004321 10.3001 0.000423
178.0 0.010678 0.011748 9.5504 0.001070
186.0 0.025627 0.027765 8.0123 0.002138
193.0 0.050223 0.053223 5.8015 0.003000
202.0 0.104359 0.108428 3.8252 0.004069
CASE 12 tie pattern: (2,2)x7, sample sizes: (m, n)=(13, 15)
Wilcoxon exact pseudo difference rate difference
statistic  p - value p - value (loge(pseudo/exact)x 100) (pseudo - exact)
131.5 0.004074 0.003556 -13.5879 -0.000518
137.5 0.009606 0.008514 -12.0706 -0.001092
145.5 0.025723  0.023197 -10.3366 -0.002526
151.5 0.048483  0.044234 -9.1713 -0.004249
161.5 0.117054  0.108680 -7.4228 -0.008374
CASE 13 tie pattern: (2,2)x7, sample sizes: (m, n)=(12, 16)
Wilcoxon exact pseudo difference rate difference
statistic  p - value p- value (loge(pseudo/exact)x 100) (pseudo - exact)
118.0 0.004424 0.004171 -5.8819 -0.000253
124.0 0.010411 0.009874 -5.2983 -0.000537
130.0 0.022065 0.021035 -4.7814 -0.001030
138.0 0.052071  0.049952 -4.1549 -0.002119
146.0 0.106393  0.102655 -3.5764 -0.003738
CASE 14 tie pattern: (3,3,4,3,4,5,4), sample sizes: (m, n)=(12, 14)
Wilcoxon exact pseudo difference rate difference
statistic  p - value p - value (loge{pseudo/exact)x 100) (pseudo - exact)
104.0 0.000807 0.001020 23.4249 0.000213
114.0 0.005454  0.006335 14.9716 0.000881
118.0 0.010647 0.011682 9.2760 0.001035
124.5 0.025857 0.026322 1.7812 0.000465
130.0 0.048476  0.053000 8.9223 0.004524
138.0 0.108623 0.118577 6.2056 0.006954
CASE 15 tie pattern: (1,2,3,4,5,6,7), sample sizes: (m, n)=(10, 18)
Wilcoxon exact pseudo difference rate difference
statistic  p - value p - value (loge(pseudo/exact)x 100) (pseudo - exact)
89.0 0.002513  0.003066 19.9034 0.000553
99.5 0.012801 0.013627 6.2526 0.000826
105.0 0.025433  0.028632 11.8478 0.003199
1115 0.052788  0.054592 3.3595 0.001804
118.5 0.101820 0.103926 2.0469 0.002106
CASE 16 tie pattern: (7,6,5,4,3,2,1), sample sizes: (m, n)=(10, 18)
Wilcoxon exact pseudo difference rate difference
statistic p - value p - value (loge(pseudo/exact)x 100) (pseudo - exact)
89.5 0.002727 0.003066 11.7309 0.000339
99.5 0.011918 0.013627 13.4000 0.001709
105.0 0.024970 0.028632 13.6850 0.003662
111.5 0.052438  0.054592 4.0248 0.002154
118.5 0.102206  0.103926 1.6685 0.001720

pseudo p - values are computed with eq.(3).
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Table 4 Discrepancy between exact and pseudo p - values: 32 £ m+n < 41

CASE 17 tie pattern: (3,3,4,3,4,5,5,4,3), sample sizes: (m, n)=(15, 19)

Wilcoxon exact pseudo difference rate difference

statistic = p- value p - value (loge(pseudo/exact) x 100) (pseudo - exact)
187.5 0.003914  0.004001 2.1903 0.000087
195.5 0.009211  0.009338 1.3725 0.000127
201.0 0.015590 0.016536 5.8935 0.000946
206.0 0.024254  0.025608 5.4326 0.001354
215.0 0.049820 0.051813 3.0035 0.001984
228.0 0.117665 0.120913 2.7230 0.003248

CASE 18 tie pattern: (2,2)x8, sample sizes: (m, n)=(16, 16)

Wilcoxon exact pseudo difference rate difference

statistic ~ p - value p - value (loge(pseudo/exact) x 100) (pseudo - exact)
192.0 0.003057  0.002909 -4.9574 -0.000148
202.0 0.000886  0.009466 -4.3462 -0.000420
212.0 0.026665 0.025671 -3.7999 -0.000994
222.0 0.061392  0.059401 -3.2960 -0.001991
230.0 0.108039  0.104936 -2.9145 -0.003103

CASE 19 tie pattern: (2,(2,2)x9), sample sizes: (m, n)=(17, 21)

Wilcoxon exact pseudo difference rate difference

statistic  p - value p - value (loge(pseudo/exact)x 100) (pseudo - exact)
247.5 0.006726  0.006208 -8.0145 -0.000518
253.5 0.011178 0.010372 -7.4796 -0.000806
263.5 0.024039  0.022490 -6.6617 -0.001549
275.5 0.053273  0.050296 -5.7502 -0.002977
287.5 0.104467  0.099466 -4.9060 -0.005001

CASE 20 tie pattern: (3,3,4,3,4,5,5,4,3,4,3), sample sizes: (m, n)=(20, 21)

Wilcoxon exact pseudo difference rate difference

statistic  p - value p - value (loge(pseudo/exact)x 100) (pseudo - exact)
328.0 0.007522 0.007924 5.2015 0.000402
338.0 0.015583  0.016240 4.1284 0.000657
348.0 0.020790  0.030857 3.5193 0.001067
358.0 0.053188  0.054641 2.6959 0.001453
368.0 0.088679  0.090589 2.1315 0.001910
378.0 0.138733  0.141196 1.7597 0.002463

CASE 21 tie pattern: (1,1,1,2,1,1,2,1)x4, sample sizes: (m, n)=(20, 20)

Wilcoxon exact pseudo difference rate difference

statistic  p - value p - value (loge(pseudo/exact)x 100) (pseudo - exact)
330.0 0.014910  0.015206 1.9633 0.000296
340.0 0.020272  0.020782 1.7270 0.000510
350.0 0.053229  0.054039 1.5094 0.000810
360.0 0.090129 0.091315 1.3078 0.001186
370.0 0.142772  0.144384 1.1224 0.001612

CASE 22 tie pattern: (6,5,4,3,2,(1,1)x 10), sample sizes: (m, n)=(20, 20)

Wilcoxon exact pseudo difference rate difference

statistic = p- value p- value (loge(pseudo/exact) x 100) (pseudo - exact)
286.5 0.000263  0.000265 0.8566 0.000002
306.5 0.002124  0.002133 0.4403 0.000009
326.5 0.011352 0.011359 0.0648 0.000007
347.0 0.044349  0.045543 2.6568 0.001194
365.0 0.113630 0.115749 1.8480 0.002119

pseudo p - values are computed with eq.(3).



